Category Archives: Scientific Study

Possible benefits of short-chain fatty acids (SCFAs) for optimizing weight loss and metabolism.

What are SCFAs and why are they important to human health?

Short-chain fatty acids (SCFAs) are produced in the gut by friendly bacteria. The main ones produced in the gut that are important in human health are butyrate, propionate, and acetate. The body processes these short-chain fatty acids, but they also interact with several systems in the body in unique ways that have beneficial effects on metabolism.

Why should we take them though? Don’t gut bacteria produce enough SCFAs by themselves? Many people don’t have healthy gut flora. They also might not get enough fiber in their diet. Also, by taking supplemental SCFAs, it’s also possible to take them in more substantial amounts than would typically be produced in the gut without consuming enormous amounts of fiber. Taking larger than average amounts of short-chain fatty acids can be useful for biohacking purposes such as enhanced weight loss.

Some Research on SCFAs

  • Oral administration of SCFAs could reduce fat gain in pigs via reducing fat storage and enhancing fat burning. Study
  • Butyrate and propionate protect against diet-induced obesity and regulate gut hormones. Study
  • Acute oral sodium propionate supplementation raises resting energy expenditure and fat burning in fasted humans.Study
  • Propionate. Anti-obesity and satiety enhancing factor? Study.

How I am taking them

  • Sodium Butyrate and Propionate Supplement:

  • Apple Cider Vinegar Supplement ( for increasing acetate ) :

Blinking Lights Used To Treat Alzheimer’s Disease In MIT Study. How Does This Even Work?

The Study

Recently, MIT released a study showing evidence that mice bred to have Alzheimer’s disease, when exposed to blinking LEDs at 40hz, had their amount of illness causing amyloid-beta protein reduced. The effect even worked in “Wild Type” mice that were not specifically bred to exhibit Alzheimer’s symptoms.  The effect prevented amyloid-beta build up in mice in the early stages of the disease, but it also reduced amyloid-beta protein in mice that had already accumulated significant amounts of the protein and were thus at a later stage of the disease.  This result seems hard to make sense of because flashing lights aren’t something that seems capable of having disease curing effects. How could this possibly work given the difficulty in treating neurodegenerative diseases?

Looking more closely at the study, specifically at the mechanism of action proposed by the researchers, we find increased microglial activity. The microglial cells are the primary immune system cells in the brain. Some theorize that infections cause Alzheimer’s in the brain, so according to that theory, increasing the activity of microglia could help fight a possible Alzheimer’s disease causing infection.  In the study, the specific observed activity of the microglia was an increase in engulfing of amyloid beta proteins.  The end products of degraded amyloid protein were also reduced.  This suggests that there was an alteration in endosomal processing.

When researchers blocked GABA receptors, the amyloid clearing effect no longer worked. Contradicting GABA receptor activation being the sole source of the amyloid-beta reducing effect is that in the past GABA agonists failed to improve Alzheimer’s patient’s outcomes.


GABA receptors connect to microglia via astrocytes. Astrocytes modulate microglial activity, and their behavior is affected via GABA signaling. GABA acts as an anti-inflammatory via these cells. Strengthening the anti-inflammatory hypothesis is there is evidence that anti-inflammatories such as aspirin protect against Alzheimer’s pathology.

Astrocytes are related to circadian rhythm brain entrainment and Gamma oscillations. Flicking lights on and off increases glutamate signaling which is countered by GABA signaling from astrocytes. If GABA signaling doesn’t modulate glutamate signaling, that leads to the well known human photoparoxysmal response in people with epilepsy, in which blinking lights can cause seizures, perhaps because of sclerotic astrocytes that can’t function properly to slow down the elevated glutamate driven excitation.

So can we spin together a theory about how this all works? How do blinking lights reduce disease causing amyloid plaques?

My Speculation: Blinking lights cause astrocytes to get activated and release GABA to control photoparoxysmal driven glutamate signaling. This release, along with other signals from astrocytes, triggers anti-neuroinflammation and engulfing activity in microglia which helps clean up Alzheimer’s damage. Lack of effectiveness of GABA agonists alone in the treatment of Alzheimer’s disease provides evidence against the idea that GABA alone was solely responsible for the effect. Perhaps there is some other necessary signal that is released by astrocytes along with GABA to influence microglial anti-inflammatory behavior.

Researchers have linked neuroinflammation to other neurodegenerative diseases, so the applicability of this mechanism of action could be widespread.

New Research Into The Link Between Metals and Neurodegenerative Diseases

Peres, T. V., Parmalee, N. L., Martinez-Finley, E. J., and Aschner, M. (2016). Untangling the Manganese-α-Synuclein Web. Front. Neurosci. Frontiers in Neuroscience 10. doi:10.3389/fnins.2016.00364.

In this article the authors review manganese’s interaction with alpha-synuclein protein as a possible cause of dopaminergic related neurodegenerative diseases such as Parkinson’s. The hallmark of Parkinson’s is alpha-synuclein aggregation in which groups of the protein forms into tangles that cause cell death.  They note that disease of excess manganese (manganism),  and Parkinson’s both involve the dopaminergic systems, but in different areas of the brain.

After reviewing several studies, the authors suggest that manganese is likely only a contributing factor to alpha-synuclein aggregation. It is suggested that it interacts with other metals in the brain in a complex web to cause disease.  The observation of this interaction, in various experiments cited, leads the authors to ultimately conclude that alpha-synuclein may be neuroprotective by helping to scavenge excess metals in the brain, but the protein ultimately gets overwhelmed and begins to form tangles as levels of metals rise and are unable to be cleared from the brain.

The metals that cause alpha-synuclein to tangle up and cause disease are aluminum, copper, cadmium, iron, manganese, and zinc (Paik et al., 1999). Cadmium is a well known toxic metal and should be avoided. Aluminum is present in a wide variety of products and even in food additives and serves no nutritional purpose. Thus, limiting exposure to aluminum might be a practical way to protect against neurodegenerative disease.